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We studied the multiatomic contact effect of a friction force microscope at a finite temperature using the
dynamical simulation of the Frenkel-Kontrova-Tomlinson model with a finite contact size. The friction force
depends crucially on both the lattice mismatch between the tip of a friction force microscope and the sample
surface and the strength of the lateral coupling between atoms in the tips. In the case of strong coupling, the
friction force depends strongly on both the lattice mismatch and the tip size: there exists a magic size at which
the friction force is reduced dramatically due to suppression of the effective corrugation of the surface potential
to drag the tip. In the case of weak coupling, a decrease of the friction force with increasing temperature is
enhanced as the tip size increases, irrespective of the lattice mismatch. This is caused by the enhanced thermal
fluctuation for the multiatomic contact. The correlation among atoms in the multiatomic contact is also
discussed.
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I. INTRODUCTION

Scientists and engineers have long been intrigued by the
phenomena of friction and a friction force microscope �FFM�
was developed as a new ideal experimental method to detect
friction in the atomic scale. Mate et al.1 reported the first
observation of a stick-slip movement of the tip with the
atomic periodicity of the sample surface structure. Recently,
atomic scale control of friction has also been tried by actua-
tion of nanometer-sized contacts.2

A number of experimental results obtained by a friction
force microscope have been explained successfully by a
Tomlinson model3 in which a single spring and a single-
atomic tip are assumed. The cantilever and the contact of the
FFM are thought to act as springs in series and this picture
gives the single-spring model with the effective spring con-
stant. The occurrence of the stick slip as a function of load4,5

and the occurrence of slip over multiple lattice units1,6–10

have been analyzed satisfactorily. Furthermore, the scanning
velocity dependence of the atomic friction have also been
elucidated by including thermal activation of the slip
motion9,11,12 for the sliding velocity of not so high. As for the
observed nonmonotonic dependence of the friction force in
high sliding velocities,4 two mechanisms have been pro-
posed: �1� the energy dissipation mainly in a tip but a
substrate13,14 and �2� occurrence of higher slips at high slid-
ing velocities.15

Recently, the “extended Tomlinson model” has been pro-
posed by Maier et al.:16 a two-spring model where one
spring represents a cantilever and the other spring a micro-
scopic contact separately and a multitip model of multi-
atomic contact with the surface. The microscopic contact
spring originates from the tangential displacement between
atomic layers of a tip apex.17 Maier et al.16 showed with the
two-spring model that the thermal fluctuation of the friction

force clearly followed the frequency of the cantilever reso-
nance. In the two-spring model, a new nontrivial regime has
also been expected if the jump frequency of a tip is larger
than or equal to the characteristic frequency of the
cantilever.17 However, the two-spring model can be reduced
to the single-spring model in the opposite limit of the jump
frequency of the tip much less than the characteristic fre-
quency of the cantilever.17 As for the multiatomic contact
effect, Maier et al.16 pointed out that the number of atoms
was crucial to interpret the duration of the slip: the slips
become slower with the increasing number of atoms. In the
multiatomic contact model proposed by Maier et al., how-
ever, the coupling between atoms is not considered. The
atomic interaction within the same atomic layers of a tip
apex is thought to cause the coupling between atoms.

The coupling between atoms in the multiatomic contact
can be considered in the Frenkel-Kontrova model.18,19 In the
Frenkel-Kontrova model, an adsorbed monolayer on an
atomically flat surface is modeled: adsorbate atoms are
coupled with springs and they interact with a spatially peri-
odic surface potential. The Frenkel-Kontrova-Tomlinson
model is constituted by combining the Frenkel-Kontrova
model with the Tomlinson model. In the Frenkel-Kontrova-
Tomlinson model, Weiss and Elmer20,21 studied both the
static and the kinetic frictions in the limit of zero tempera-
ture. In these studies, the periodic boundary condition was
used for atoms in contact with the surface and the size effect
of the contact has not been studied. In our previous paper,22

on the other hand, we studied the size effect on the activation
energy of the diffusion coefficient of the cluster using the
Frenkel-Kontrova model with a finite contact size and clari-
fied the condition of occurrence of the magic size where the
activation energy can be reduced dramatically. Krylov23

showed that a dynamical misfit caused by the thermal vibra-
tions of the cluster atoms leads to a dramatic increase of the
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pre-exponential factor in the diffusion coefficient, in the case
of weak corrugation of the surface potential compared to the
coupling between atoms.

Our aim is to clarify the size effect for multiatomic con-
tacts on the atomistic friction mechanism of a friction force
microscope at a finite temperature for low sliding velocities.
We used the Frenkel-Kontrova-Tomlinson model with a fi-
nite contact size to take into account the coupling between
atoms. Ermak’s algorithm24 is used to solve numerically the
Langevin equation for each atom in contact with the surface.
We address the dependence of the friction on the number of
atoms in contact with the surface, the lattice mismatch be-
tween the tip and the surface, the stiffness of the contact
atomic layer, and the temperature.

II. FORMULATION

In the one-dimensional “extended Tomlinson model”
�Ref. 16� of a tip apex with N atoms with a single effective
spring, the total interaction energy is written as

Ee�x,R� = − �
i=1

N

U1 cos�2�xi

a
� + �

i=1

N
k1

2
�x0i − xi�2, �1�

where xi is a coordinate of each atom within the atomic layer
in contact with the sample surface and x0i is the equilibrium
position of each atom where the springs with k1 have no
deviations at the support point of the FFM. Hence, x0i can be
written as x0i=R+ � N+1

2 − i�b. Here, b is the equilibrium sepa-
ration, i.e., the lateral lattice constant of the tip apex, and R is
the position of the support. x represents the full set of xi for
i=1,2 , . . . ,N. The first term of Eq. �1� is the periodic poten-
tial of a substrate with a lattice constant a and the second
term is the effective elastic interaction with an elastic con-
stant k1 between the tip atom and the support point. The
parameters for each N-tip simulation were assumed16 with
each of the contact springs having the tip stiffness of k1
=ktip /N, the amplitude of the potential corrugation of U1
=U /N, and the mass of the tip m=mtip /N. Here, ktip, U, and
mtip are the total elastic constant, the amplitude of the poten-
tial corrugation, and the total mass of the tip, respectively.
This scaling was chosen in order to always reproduce the
experimentally observed slope and amplitude of the stick-
slip force curves at T=0 for a different number of atoms
involved. In Eq. �1�, the coupling between atoms is com-
pletely neglected. We consider the interaction as an elastic
interaction with the spring constant k2 between neighboring
atoms and modified the total interaction energy as follows:

Em�x,R� = Ee�x,R� + �
i=1

N−1
k2

2
�xi − xi+1�2. �2�

It should be mentioned that our modified multiatomic contact
model is equivalent to the Frenkel-Kontrova-Tomlinson
model with a finite contact size and can be reduced to the
“extended Tomlinson model” �Ref. 16� with a single spring
in the case of k2=0. Furthermore, it reproduces the results in
a single-atomic tip model with ktip, U, and mtip, in the rigid
commensurate case of k2=� and a=b, irrespective of the

number of N. In a conventional single-tip model, the stick-
slip motion of a tip atom does not occur for ktipa

2 /U
� �2��2, while the stick slip is induced for �2��2�ktipa

2 /U.
This criterion changes dramatically in a multiatomic contact
model with a lattice mismatch between a and b. In the case
of k2=�, the effective amplitude U� of the corrugation of the
total potential of the substrate to drag a tip is calculated as22

U� =
U�sin��bN/a��
N�sin��b/a��

. �3�

The behavior of U� as a function of b /a is plotted for some
values of N in Fig. 1, with the threshold of the stick-slip
motion. It is seen that U� vanishes if the lattice mismatch
satisfies the relation of bN=an for integer n. This means that
there may exist a magic size N at which the effective poten-
tial corrugation vanishes.

When the support point R is scanned at a finite velocity v,
the dynamics of each tip atom is described by the Langevin
equation8,12

mẍi + m�ẋi = −
�Em�x,vt�

�xi
+ f i, �4�

where m is the mass of mtip /N, � is the viscous friction
coefficient representing the single-particle energy exchange
with a substrate, and Em is the total interaction energy given
by Eq. �2�, where R is set as R=vt. � determines the mo-
mentum relaxation time and is assumed to be independent of
N to reproduce a single tip model in the case of k2=� and
a=b. Here, f i is a random force that is related to the viscous
friction coefficient � by the fluctuation dissipation theorem

�f i�t�f i�t��� = 2�mkBT��t − t�� , �5�

where kB is the Boltzmann constant and T is an absolute
temperature. We used Ermak’s algorithm24 to solve the
Langevin equation numerically. The friction force F can be
calculated as
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FIG. 1. The relation between the effective amplitude U� of the

corrugation and the lattice mismatch b /a at three values of N. The
horizontal line represents the threshold of U�=ktipa2 / �2��2 for oc-
currence of the stick-slip motion. Here, U=0.55ktipa2 is assumed.
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F = ktip�vt − xG� , �6�

where xG is the position of the center of mass xG=�i=1
N xi /N.

In numerical calculation, we take a as a unit of length,
mtip as a unit of mass, and ktipa

2 as a unit of energy. This
means that the unit of time is 	mtip /ktip. In this unit system,
our model is characterized by four dimensionless parameters:
a viscous friction coefficient �	mtip /ktip, an amplitude of the
potential corrugation U /ktipa

2, a scanning velocity of a sup-
port point of the FFM v	mtip /ktip /a, and a temperature
TkB /ktipa

2. For example, the following values were assumed
by Riedo et al.4 and Reimann and Evstigneev:13 a
=0.52 nm, ktip=1.2 N /m, U
1.1 eV, mtip=3�10−12 kg,

�mtip=0.8�10−5 kg /s, and v=0.328 �m /s. The corre-
sponding dimensionless values are v=0.001, �=4.2, U
=0.55, and kBT=0.013 at room temperature. We adopted
these dimensionless values in the following numerical calcu-
lation.

III. NUMERICAL RESULTS

At first, we present the results in the lattice-matched case
of a=b and elucidate the contact size dependence for several
values of k2 /ktip. In Fig. 2, the time-averaged friction force
�F� is plotted as a function of the contact size N for several
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FIG. 2. The relation between the time-averaged friction force

�F� and the tip size N in the lattice-matched case of a=b for several
values of k2 /ktip at �a� T=0 and �b� T=0.013ktipa2 /kB.
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�F� and the tip size N in the lattice-mismatched case of b /a
=0.887 for several values of k2 /ktip at �a� T=0 and �b� T
=0.013ktipa2 /kB.
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values of k2 /ktip at T=0 and at room temperature of T
=0.013. �F� does not depend on both N and k2 /ktip at T=0,
while it depends on them at room temperature. In the case of
k2=� which results in the single-atomic contact, the aver-
aged friction force is reduced slightly at room temperature
irrespective of the tip size N in Fig. 2�b�. In the opposite
extreme case of k2=0 in Fig. 2�b�, the averaged friction force

is reduced remarkably with increasing the tip size N at room
temperature. For the intermediate values of k2, the averaged
friction force takes the mean behavior between these two
extreme cases. When there exists a lattice mismatch, on the
other hand, the situation is changed dramatically. In Fig. 3,
the time-averaged friction force �F� is plotted at the lattice
mismatch of b /a=0.887 as a function of the tip size N for
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FIG. 6. �x1−xi� as a function of x1 at N=14 for b /a=1. �a� k2 /ktip=1, T=0.0026ktipa2 /kB, �b� k2 /ktip=1, T=0.013ktipa2 /kB, �c� k2 /ktip

=0, T=0.0026ktipa2 /kB, and �d� k2 /ktip=0, T=0.013ktipa2 /kB.
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several values of k2 /ktip at T=0 and at room temperature. �F�
depends on both N and k2 /ktip even at T=0 in Fig. 3�a�, and
it decreases with increasing k2 contrary to the case of Fig.
2�b�. For large values of k2, �F� is reduced remarkably at a
specific size, i.e., the magic size exists. In the case of k2
=�, the magic size is 9 since 0.887�9
8.22 It is seen in
Fig. 3�a� that the magic size is increased slightly from N=9
with decreasing k2 from �. The reduction of �F� at the size
other than the magic size is also induced by suppression of
the effective corrugation of the surface potential in the
lattice-mismatched case, as seen in Fig. 1. At room tempera-
ture in Fig. 3�b�, �F� is reduced remarkably for small values
of k2 similarly to the lattice-matched case in Fig. 2�b� and the
opposite dependence on k2 remains in a region of the tip size
around the magic size. We have confirmed similar dramatic
reduction of the averaged friction force at the magic size in
other lattice-mismatched cases. In the case of b=1.2a, for
example, the dramatic reduction of �F� was obtained at N
=5, 10, and 15 for k2=�.

Second, we study the origin of these behaviors of the
averaged friction force. Figure 4 shows the time dependence
of the tip position xi, the position xG of the center of mass,
and the friction force F at room temperature for b /a=1 and
N=14. In the case of k2=1 in Figs. 5�a� and 5�b�, each atom
exhibits a coherent stick-slip motion inducing the stick-slip
motion of xG and the resultant saw-tooth behavior of F. On
the other hand, in the case of k2=0 in Figs. 4�c� and 4�d�,
each tip reveals jumps forth and back between the previous

and final positions and exhibits incoherent stick-slip motion.
As a result, it brings about wide variation of slip duration of
xG as pointed out by Maier et al.,16 and F and the time-
averaged friction force are reduced remarkably. Figure 5
shows the time dependence of the tip position xi, the position
xG of the center of mass, and the friction force F at room
temperature for b /a=0.887 and N=9. In the case of k2=1 in
Figs. 5�a� and 5�b�, each atom shows a coherent stick-slip
motion inducing the stick-slip motion of xG and the resultant
saw-tooth behavior of F. An intermediate jump which is in-
duced by suppression of the effective corrugation of the sur-
face potential can also be seen in Figs. 5�a� and 5�b�. On the
other hand, in the case of k2=50 in Figs. 5�c� and 5�d�, each
tip shows a continuous motion with the large thermal fluc-
tuation. The stick-slip motion of xG disappears4,5 and the
averaged friction force �F�=0.0069 approaches the viscous
friction force, mtip�v=0.0042. This is caused by strong sup-
pression of the effective corrugation of the surface potential.

Third, we study interatomic site correlation in the multi-
atomic contacts. Figure 6 presents �x1−xi� for 2� i�14 as a
function of the position x1 of the front atom for b /a=1. In
the case of k2=1 in Fig. 6�a� �T=0.0026� and Fig. 6�b� �T
=0.013�, the intervals between neighboring atoms are
roughly kept to a. The slip positions of the front atom are
distributed and the width of the distribution increases with
temperature. In the case of k2=0 in Fig. 6�c� �T=0.0026� and
Fig. 6�d� �T=0.013�, on the other hand, the intervals are not
kept to a and the distribution of the slip position of the front
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atom have a larger width in comparison with the case of k2
=1. Figure 7 presents �x1−xi� for 2� i�9 as a function of
the position x1 for b /a=0.887. In the case of k2=1 in Fig.
7�a� �T=0.0026� and Fig. 7�b� �T=0.013�, the intervals be-
tween neighboring atoms are roughly kept to a but b since
8a
9b. This means that the contact atoms take the commen-
surate positions with the substrate in the weak-coupling case.
The slip positions of the front atom has a distribution and the
width increases with temperature. In the case of k2=50 in
Fig. 7�c� �T=0.0026� and Fig. 7�d� �T=0.013�, on the other
hand, the intervals are kept to b but a, i.e., the incommensu-
rate position with the substrate. The distribution of each slip
position of the front atom has much larger width by reduc-
tion of the effective corrugation of the surface potential and
the overlap between adjacent slips corresponds to nearly con-
tinuous motion.

To see clearly the site correlation among atoms in multi-
atomic contacts, �x1−xi� is replotted as a function of i. Figure
8 presents �x1−xi� for 2� i�14 as a function of i for b /a
=1, corresponding to Fig. 6. In the case of k2=1 in Fig. 8�a�
�T=0.0026� and Fig. 8�b� �T=0.013�, the average of �x1
−xi� is well approximated as �x1−xi�
�i−1�b and the dis-
persion of �x1−xi� increases monotonically with i. In the case
of k2=0 in Fig. 8�c� �T=0.0026� and Fig. 8�d� �T=0.013�,
the average of �x1−xi� can also be well approximated as
�x1−xi�
�i−1�b, but the dispersion is large and almost in-
dependent of i. Figure 9 presents �x1−xi� for 2� i�9 as a
function of i for b /a=0.887, corresponding to Fig. 7. In the

case of k2=1 in Fig. 7�a� �T=0.0026� and Fig. 7�b� �T
=0.013�, the average of �x1−xi� is well approximated as
�x1−xi�
�i−1�a, i.e., the atoms take positions commensu-
rate with the substrate. The dispersion of �x1−xi� increases
monotonically with i. In the case of k2=50, the average of
�x1−xi� is well approximated as �x1−xi�
�i−1�b, i.e., the
atoms take positions incommensurate with the substrate. The
dispersion is small and is strongly suppressed in a short
range. In Fig. 10, the standard deviations of �x1−xi� are plot-
ted as a function of i for all the cases in Figs. 8 and 9. The
suppression of the standard deviation of �x1−xi� means en-
hanced correlation between the first atom and the ith atom. In
Fig. 10�a� for the lattice-matched case, the standard deviation
is small compared to the lattice constant b of a tip and in-
creases monotonically with i, in the case of k2=1 corre-
sponding to Figs. 6�a� and 6�b�. This means that the site
correlation is preserved over the multiatomic contact in a
regime of the coherent stick-slip motion. On the other hand,
the standard deviation is about 0.5b and almost independent
of i, in the case of k2=0 corresponding to Figs. 6�c� and 6�d�.
In a regime of the incoherent stick-slip motion, the site cor-
relation is almost diminished independent of i. Meanwhile,
in Fig. 10�b� for the lattice-mismatched case, the site corre-
lation is preserved over the multiatomic contact and a mono-
tonic weakening of the interatomic site correlation with i can
be seen for both cases of the coherent stick-slip motion cor-
responding to Figs. 7�a� and 7�b� and the continuous motion
corresponding to Figs. 7�c� and 7�d�. As for the temperature

FIG. 8. �x1−xi� as a function of i at N=14 for b /a=1. �a� k2 /ktip=1, T=0.0026ktipa2 /kB, �b� k2 /ktip=1, T=0.013ktipa2 /kB, �c� k2 /ktip

=0, T=0.0026ktipa2 /kB, and �d� k2 /ktip=0, T=0.013ktipa2 /kB.
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dependence, the standard deviation is increased and the site
correlation is weakened with increasing temperature for all
the cases. Especially, the temperature effect is most efficient
in the regime of the stick-slip motion for the lattice-
mismatched case, since the effective corrugation of the sub-
strate potential is suppressed.

Finally, we study the temperature dependence of �F�. Fig-
ure 11�a� represents the temperature dependence of �F� for
b /a=1 at N=14. As k2 is decreased, �F� is decreased drasti-
cally with increasing temperature. Figure 11�b� represents
the temperature dependence of �F� for b /a=0.887 at the
magic size of N=9. For large values of k2, �F� almost van-
ishes irrespective of temperature. However, for small values
of k2, large temperature dependence appears and �F� de-
creases remarkably as temperature increases.

IV. DISCUSSION AND CONCLUSION

The size effect in multiatomic contacts depends crucially
on the coupling strength between atoms. In the strong-
coupling case, both the lattice mismatch and the contact size
influence strongly on the friction. Especially, the friction can
be reduced nearly to zero at the magic size.22 This is caused
by suppression of the effective corrugation of the surface
potential by taking incommensurate configuration with the
substrate for the multiatomic contact, as seen in Figs. 7�c�
and 7�d�. In the weak-coupling case, on the other hand, the

effect of thermal fluctuation is enhanced with increasing
number of atoms and it results in remarkable reduction of the
friction force irrespective of the lattice mismatch, as seen in
Fig. 11.

Now, we will discuss the temperature T dependence of the
averaged friction force in Fig. 11. In the case of k2=�, it can
be reduced to the single-tip results. Sang et al.12 proposed the
mechanism on the scanning velocity dependence of the fric-
tion force in the ramped creep regime, in which the thermally
activated barrier-hopping fluctuations occur preferentially
when the tip is close to slipping at the top of the barrier. The
averaged friction force �a solid line in Fig. 11�a�� predicted
by their theory agrees well with our simulated result for k2
=�. It suggests that the thermally activated barrier-hoppings
occur in the vicinity of slipping points. In the opposite case
of k2=0 in Figs. 11�a� and 11�b�, on the other hand, it can
also be reduced to the single-tip results for the time averaged
friction force if the temperature T is replaced by the effective
temperature of NT. The random force f i for the ith atom with
mass of mi=mtip /N is proportional to 	�mikBT and the tem-
perature appears in Eq. �4� only through the random force f i.
The effective temperature for the multiatomic contact is pro-
portional to f i /mi and hence it is increased to NT. This scal-
ing of the effective temperature does not hold when there
exists a coupling between atoms. The predicted averaged
friction force at the effective temperature of NT is also drawn
by broken lines in Figs. 11�a� and 11�b� and they also agree
with our simulated results for k2=0 in the region of low
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temperatures. In Fig. 12, the time dependence of the tip po-
sition xi, the position xG of the center of mass, and the fric-
tion force F are shown at T=0.0065, for a=b, k2=0, and N
=14. Each tip exhibits a stick-slip motion although it is in-
coherent. The incoherence between slips does not affect the
time-averaged friction force and hence the friction force can
be predicted by the theory in the ramped creep regime.12 The
observed discrepancy at higher temperatures suggests that
the assumption of the ramped creep regime cannot be satis-
fied at these substantially high effective temperatures. Each
tip reveals jumps forth and back as seen in Fig. 4�c� and the
barrier hoppings occur all over the stick point. Indeed, we
observed significant reduction of the site correlation in mul-
tiatomic contact by increasing temperature in Fig. 8.

Next, we will discuss the k2 dependence of the averaged
friction force in Fig. 11. In the case of Fig. 11�a� for the
lattice-matched case, the friction force is decreased mono-
tonically with decreasing k2 from that for k2=� to that for

k2=0. This is caused by the increase of the effective tempera-
ture as k2 is decreased. On the other hand in Fig. 11�b� at the
magic size for the lattice-mismatched case, the opposite k2
dependence is seen in low temperatures. The dramatic de-
crease of the effective corrugation of the surface potential is
induced by the incommensurate configuration of the multi-
atomic contact and it occurs only if the coupling between
atoms is sufficiently strong. This corresponds to the opposite
k2 dependence of �F� in low temperatures in Fig. 11�b�, i.e.,
�F� at the magic size decreases with the increasing coupling
strength k2 in low temperatures.
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Finally, we will comment on the magnitude of the calcu-
lated average friction force �F�. In the single-atomic tip case
of k2=�, the average friction force becomes approximately
1.7 nN at room temperature in Fig. 11. We assumed the
effective spring constant ktip of 1.2 N/m, the lattice constant
of the substrate a of 0.52 nm, the sliding velocity v of
0.328 �m /s, and the surface-potential corrugation U of 1.1
eV. For these situations, the average friction force has been
measured and the value is approximately 1.3 nN.4 The slight
discrepancy may be caused by the multiatomic contact.

In summary, we studied the multiatomic contact effect on
the atomic friction of a friction force microscope at a finite
temperature using the dynamical simulation of the Frenkel-
Kontrova-Tomlinson model with a finite contact size. The
friction force depends crucially on both the lattice mismatch
between the tip and the sample surface and the strength of
coupling between atoms. In the case of strong coupling, the
friction force depends strongly on both the lattice mismatch
and the tip size: there exists a magic size at which the friction
force is reduced dramatically due to suppression of the ef-
fective corrugation of the surface potential to drive the tip. In
the case of weak coupling, the friction force is reduced more
largely with increasing temperature as the contact size in-
creases, irrespective of the lattice mismatch. This is caused
by the enhanced thermal fluctuation of the multiatomic con-
tact.
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